Algebraic Geometry Final Examination, 2009, B.Math/M.Math/Ph.D.

Unless specified otherwise, you may assume the field k to be algebraically closed and of characteristic 0. Each question carries 12 marks. Anything proved in the class maybe cited without proof. Results of exercises, however, must be derived in full.

- 1. (i): Show that the element 4 + X in the formal power series ring $\mathbb{Z}[[X]]$ is irreducible.
 - (ii): Show that the element $6 + X \in \mathbb{Z}[[X]]$ is reducible.
- 2. (i): Let k be a field and $K = k(X_1, ..., X_n)$ be the field of rational functions in n variables over k. Show that K is not a k-algebra of finite type.
 - (ii): Let X_0, X_1, X_2 denote homogeneous coordinates in $\mathbb{P}^2(k)$. Show that the set

$$D(X_0X_1) \cup \{[1:0:0]\} \subset \mathbb{P}^2(k)$$

is not a quasiprojective variety. This shows that the union of two quasiprojectives need not be quasiprojective. (*Hint:* A quasiprojective variety is open in its Zariski closure.)

3. (i): Let A be a Noetherian local ring with unique maximal ideal \mathfrak{m} , and let M be a finitely generated A-module. Suppose for some $k \geq 1$ we have:

$$\mathfrak{m}^k M/\mathfrak{m}^{k+1} M = \mathfrak{m}^{k+1} M/\mathfrak{m}^{k+2} M$$

Then show that $\mathbf{H} = 0$.

- (ii): Prove that a plane projective curve of degree m can have at most 3m(m-2) points of inflexion.
- 4. Let $X = \mathbb{A}^{1}(k)$, and $Y = V(X_{2}^{2} X_{1}^{3}) \subset \mathbb{A}^{2}(k)$.
 - (i): Show that the map $\phi: X \to Y$ defined by $\phi(t) = (t^2, t^3)$ is a bijective morphism. Is it an isomorphism? Justify your answer.
 - (ii): Using the map ϕ above, describe the local ring $\mathcal{O}_{Y,0}$ (=the localisation of the the coordinate ring $\mathcal{O}(Y)$ at the maximal ideal $\mathfrak{m}_{(0,0)}$) as a subring of the field k(t) of rational functions in one variable.
- 5. (i): Find the singular points and inflexion points of the cubic curve $V(X_0^3 + X_1^3 + X_0X_1X_2) \subset \mathbb{P}^2(k)$.
 - (ii): Prove that the curve in (i) above is irreducible. Hence (or otherwise) prove that it is a rational curve.